ア | イ | ウ | エ | オ |
カ | キ | ク | ケ | コ |
サ | シ | ス | セ | ソ |
タ | チ | ツ | テ | ト |
ナ | ニ | ヌ | ネ | ノ |
ハ | ヒ | フ | ヘ | ホ |
マ | ミ | ム | メ | モ |
ヤ | ユ | ヨ | ||
ラ | リ | ル | レ | ロ |
ワ | ヰ | ヴ | ヱ | ヲ |
ン |
A | B | C | D | E |
F | G | H | I | J |
K | L | M | N | O |
P | Q | R | S | T |
U | V | W | X | Y |
Z | 数字 | 記号 |
電器製品への電力供給を、直流にて行なうこと。ACアダプターなどを介するのではなく、屋内配線を含めて直流化することを意味する。
現在、家庭に供給される電力は交流である。日本ならAC100Vである。しかし、家庭内で用いる電器製品の殆どは、内部では直流で動作している。
交流で動作する機械、たとえば洗濯機やエアコンなども、内部にはインバーターが搭載されており、交流を一旦直流に換え、その後高周波の交流にして機械を動かしている。これにより50/60Hz共用も実現した。コストは上がるが、直流モーターなどを使えば本当に直流だけで動かすことも不可能ではない。CEATEC JAPAN 2008では、TDKが「交流でないと動かないのは蛍光灯くらい」とするほど、家庭内の機器は直流が主流であり、直流給電という話が出てくることは当然の成り行きである。
蛍光灯だけは機構上交流でなければ決して動かないが、インバーターを使って交流を作れば給電自体は直流でも動作する(例えば直流1500Vが給電されている都心部の電車内の蛍光灯)。実際に現在市販されている蛍光灯器具の殆どはインバーターが使われていると考えられ、交流から一旦直流を作り、それを再び交流にしている。また、今後の普及が期待されるLED蛍光灯は、そのまま直流で動く。給電がすべて直流化しても、困ることは殆どない。
交流と直流の変換では必ず電力ロスが発生するが、この回数を減らすことでロスを低減し、効率を上げることを目的として取り組まれているのが、直流給電である。
利点が多い直流給電だが、解決不可能な欠点もいくつか存在する。
交流はトランスを使えば電圧変更が簡単だが、直流は、直流のまま電圧を変えることができない。
家電クラスの低電圧ではDC-DCコンバーターという変換器を使うが、内部では一旦高周波の交流に変換して電圧を変え、整流して直流を出力している。
高電圧ないし大電流の場合は、それなりの大型の装置が必要となりコスト面に問題があることと、やはり一旦交流に変えることから、これがノイズ源になるという問題がある。
現在、大々的に直流給電を受け入れ、利用されているのが、インターネットデータセンター(iDC)である。
サーバーはパーソナルコンピューターで、AC100Vを受け入れる。ただ、その前には瞬間停電を避けるため、必ずUPSが導入されている。UPSは直流で充電し、交流を出力するので、従来は次のような構造になっていた。
AC100V → [UPS (AC→DC→AC)] → AC100V → [サーバー (AC→DC)]
つまり、AC-DC変換、DC-AC変換、AC-DC変換、と三回も変換をすることになっている。各変換効率が90%だとしても、3回すれば73%にまで落ち込む計算で、27%の損失になる。
最初からDCで給電すれば変換が一回少なく済み、無駄な電力消費が1〜2割程度削減できる。
DC → [UPS (DC→AC)] → AC100V → [サーバー (AC→DC)]
UPSとサーバー間の接続もDC化したDCサーバーシステムであれば途中に交流を介する必要自体がなくなる。
DC → [UPS] → DC → [サーバー]
この理由により、現在のiDCでは直流供給がサービスされるのが一般化している。電圧は、DC12VやDC48V程度が一般的のようである。
シャープやTDK、あるいはパナソニック(三洋電機含む)などが、太陽電池と蓄電池を組み合わせ、直流で給電するための取り組みを進めている。
電圧とコンセントの統一が最低限必要になるが、これはまだ規格が定まっていない。直流コンセントについては、TDK、パナソニックなど、複数の企業により、開発成果がCEATEC JAPANなどで展示されている。
特に良くできているパナソニックのものは、パナソニック電工の発明品が特許申請されている。
従来通り、顔に似た造形で受け入れられやすそうなデザインのこの特許では、アークが見えることを防ぐため周壁が設けられたプラグが使われる。プラグは周壁と2本(接地極付きは3本)のピンからなるオスで、壁側は周壁とピンが差し込まれるメスになっている。壁側は基本的に角の丸い四角だが、供給電圧に応じて四隅に傾斜部を形成するようになっている。6Vは右下、12Vは左下、48Vは左右両方の下に傾斜部があり、24Vには傾斜部がない。
また、SELV用は絶縁構造が簡略化されているため、ELV用とSELV用の区別も用意される。SELV用コンセントの周壁挿入溝の下中央に突起(延長溝部)が設けられ、ELV用プラグはSELV用コンセントに挿入可能だが、SELV用プラグはELV用コンセントに挿入できないようになっている。
コメントなどを投稿するフォームは、日本語対応時のみ表示されます