ア | イ | ウ | エ | オ |
カ | キ | ク | ケ | コ |
サ | シ | ス | セ | ソ |
タ | チ | ツ | テ | ト |
ナ | ニ | ヌ | ネ | ノ |
ハ | ヒ | フ | ヘ | ホ |
マ | ミ | ム | メ | モ |
ヤ | ユ | ヨ | ||
ラ | リ | ル | レ | ロ |
ワ | ヰ | ヴ | ヱ | ヲ |
ン |
A | B | C | D | E |
F | G | H | I | J |
K | L | M | N | O |
P | Q | R | S | T |
U | V | W | X | Y |
Z | 数字 | 記号 |
「マイクロプロセッサーの集積密度は、およそ18ヶ月ごとに2倍になる」という経験則のこと。
元々はIntel創設者の一人ゴードン・アール・ムーアが1965(昭和40)年に雑誌「Electronics Magazine」に投稿した論文が初出であり、その一節で、次のように述べられていた。
The complexity for minimum component costs has increased at a rate of roughly a factor of two per year. Certainly over the short term this rate can be expected to continue, if not to increase. Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it will not remain nearly constant for at least 10 years. That means by 1975, the number of components per integrated circuit for minimum cost will be 65,000. I believe that such a large circuit can be built on a single wafer.
論文を邦訳すると、次のようになる。
部品のコストが最小になる複雑さは、毎年およそ二倍の割合で増加してきた。
短期的には、この率の増加はないとしても、現状維持されることは確実である。
長期的には、上昇率はやや不確実だが、少なくとも今後10年間ほぼ一定を保てないと信じるべき理由はない。
すなわち、1975年には、最小限のコストで得られる集積回路あたりの部品数は65,000になることを意味する。
私は、一つのウェハー上にそのような大きな回路を造ることが可能だと信じている。
つまり、マイクロチップの集積数は毎年倍に増えるが価格は変わらない、という指摘であった。
ムーア自身は、自分は18ヶ月などという数字を出したことはない、と主張しているとされる。
この法則が現在も成立しているかについては議論がある。
業界の意見も様々で、Intel上級フェローのマーク・ボーア(Mark T. Bohr)は「(法則は)重要で、社は今も法則を追っている」と述べられる一方、業界紙「Microprocessor Report」のアナリスト達は、既に半導体業界はこの法則を追ってはいないだろうとした。
元IntelのチーフIA32アーキテクトであるRobert P. "Bob" Colwellは、HOT CHIPS 25の基調講演において、ムーアの法則は早ければ2020(令和2)年に終わると述べたとされる。
プロセスの微細化は限界に近づいていることに加え、開発資金が得られるか不透明という経済的な理由もあるとされる。
約半世紀の間、コンピューター業界はこの法則に囚われてきたが、この法則の終焉も近づいているとのことである。
コメントなどを投稿するフォームは、日本語対応時のみ表示されます