ラムダ計算
読み:ラムダけいさん
外語:lambda calculus

 関数の定義と実行を抽象化した体系。
目次

概要
 関数を、文字「λ」を使って表記することからこの名がある。
 計算機科学や数学など、様々な理論で応用された結果、関数型のプログラミング言語であるLispの基盤となった。

特徴

基本概念
 通常の関数は、「f(x)=x+1」のように書かれる。これは数式である。
 ラムダ計算の式つまりラムダ式では、この関数fを「λx.x+1」のように書く。これを関数Aとする。
 ここで関数に7を代入したf(7)を考えると、ラムダ式では「(λx.x+1)7」と書かれる。
 また、引数が関数で、それに7を適用する関数を考えると、ラムダ式では「(λf.f7)」となる。これを関数Bとする。
 関数Bに関数Aを適用すれば、「(λf.f7)(λx.x+1)」という式になる。この時、
 以上の三つの式は同値である。

規則
 次の三つの規則が使われる。
  1. アルファ変換(α-変換)
  2. ベータ簡約(β-簡約)
  3. イータ変換(η-変換)

再検索